460 research outputs found

    Unequal Exposure to Ecological Hazards 2005: Environmental Injustices in the Commonwealth of Massachusetts

    Get PDF
    Unequal Exposure to Ecological Hazards 2005 documents Massachusetts residents' unequal exposure to environmental hazards. More specifically, the report analyzes both income basedand racially-based disparities in the geographic distribution of some 17 different types ofenvironmentally hazardous sites and industrial facilities in the Commonwealth of Massachusetts. This report provides evidence that working class communities and communities of color are disproportionately impacted by toxic waste disposal, incinerators, landfills, trash transfer stations, power plants, and polluting industrial facilities. In some cases, not only are new toxic facilities and dump sites located in poorer neighborhoods and communities of color, but as in the case of the public housing development and playgrounds near the Alewife station in Cambridge, housing for people of color and low income populations is sometimes located on top of preexisting hazardous waste sites and/or nearby polluting facilities. We conclude that striking inequities in the distribution of these environmentally hazardous sites and facilities are placing working class families and people of color at substantially greater risk of exposure to human health risks. We advocate the adoption of a number of measures, including a comprehensive environmental justice act, to reduce pollution and address unequal exposure to ecological threats

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc−3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of ∼2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=−12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=−8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be ≤\le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    Clumpy Galaxies in CANDELS. I. The Definition of UV Clumps and the Fraction of Clumpy Galaxies at 0.5<z<3

    Full text link
    Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demographics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)Comment: 22 pages, 15 figures. Appeared in ApJ (2015, 800, 39). A few typos correcte

    Strong Balmer lines in old stellar populations: No need for young ages in ellipticals?

    Get PDF
    Comparing models of Simple Stellar Populations (SSP) with observed line strengths generally provides a tool to break the age-metallicity degeneracy in elliptical galaxies. Due to the wide range of Balmer line strengths observed, ellipticals have been interpreted to exhibit an appreciable scatter in age. In this paper, we analyze Composite Stellar Population models with a simple mix of an old metal-rich and an old metal-poor component. We show that these models simultaneously produce strong Balmer lines and strong metallic lines without invoking a young population. The key to this result is that our models are based on SSPs that better match the steep increase of Hbeta in metal-poor globular clusters than models in the literature. Hence, the scatter of Hbeta observed in cluster and luminous field elliptical galaxies can be explained by a spread in the metallicity of old stellar populations. We check our model with respect to the so-called G-dwarf problem in ellipticals. For a galaxy subsample covering a large range in UV-V colors we demonstrate that the addition of an old metal-poor subcomponent does not invalidate other observational constraints like colors and the flux in the mid-UV.Comment: Accepted for publication in ApJ Main Journal, 9 pages, 5 figure

    Development of bovine abomasal organoids as a novel in-vitro model to study host-parasite interactions in gastrointestinal nematode infections

    Get PDF
    Gastro-intestinal nematode (GIN) parasites are a major cause of production losses in grazing cattle, primarily through reduced growth rates in young animals. Control of these parasites relies heavily on anthelmintic drugs; however, with growing reports of resistance to currently available anthelmintics, alternative methods of control are required. A major hurdle in this work has been the lack of physiologically relevant in vitro infection models that has made studying precise interactions between the host and the GINs difficult. Such mechanistic insights into the infection process will be valuable for the development of novel targets for drugs, vaccines, or other interventions. Here we created bovine gastric epithelial organoids from abomasal gastric tissue and studied their application as in vitro models for understanding host invasion by GIN parasites. Transcriptomic analysis of gastric organoids across multiple passages and the corresponding abomasal tissue showed conserved expression of tissue-specific genes across samples, demonstrating that the organoids are representative of bovine gastric tissue from which they were derived. We also show that self-renewing and self-organising three-dimensional organoids can also be serially passaged, cryopreserved, and resuscitated. Using Ostertagia ostertagi, the most pathogenic gastric parasite in cattle in temperate regions, we show that cattle gastric organoids are biologically relevant models for studying GIN invasion in the bovine abomasum. Within 24 h of exposure, exsheathed larvae rapidly and repeatedly infiltrated the lumen of the organoids. Prior to invasion by the parasites, the abomasal organoids rapidly expanded, developing a ‘ballooning’ phenotype. Ballooning of the organoids could also be induced in response to exposure to parasite excretory/secretory products. In summary, we demonstrate the power of using abomasal organoids as a physiologically relevant in vitro model system to study interactions of O. ostertagi and other GIN with bovine gastrointestinal epithelium

    Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

    Full text link
    This article describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas-liquid interface and of the neighboring fluid. A first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to theoretical result. A second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure

    The evolution of galaxy shapes in CANDELS: from prolate to oblate

    Get PDF
    We model the projected b/a-log a distributions of CANDELS main sequence star-forming galaxies, where a (b) is the semi-major (semi-minor) axis of the galaxy images. We find that smaller-a galaxies are rounder at all stellar masses M and redshifts, so we include a when analyzing b/a distributions. Approximating intrinsic shapes of the galaxies as triaxial ellipsoids and assuming a multivariate normal distribution of galaxy size and two shape parameters, we construct their intrinsic shape and size distributions to obtain the fractions of prolate, oblate and spheroidal galaxies in each redshift and mass bin. We find that galaxies tend to be prolate at low m and high redshifts, and oblate at high M and low redshifts, qualitatively consistent with van der Wel et al. (2014), implying that galaxies tend to evolve from prolate to oblate. These results are consistent with the predictions from simulations (Ceverino et al. 2015, Tomassetti et al. 2016) that the transition from prolate to oblate is caused by a compaction event at a characteristic mass range, making the galaxy center baryon dominated. We give probabilities of a galaxy's being prolate, oblate or spheroidal as a function of its M, redshift, projected b/a and a, which can facilitate target selections of galaxies with specific shapes at hight redshifts. We also give predicted optical depths of galaxies, which are qualitatively consistent with the expected correlation that AV should be higher for edge-on disk galaxies in each log a slice at low redshift and high mass bins.Comment: 24 pages, 25 figures, submitted to MNRA
    • …
    corecore